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Abstract 

Hollow nanostructures are at the forefront of many scientific endeavors. These consist of nanoboxes, nanocages, 
nanoframes, and nanotubes. We examine the mathematics of atomic coordination in nanoboxes. Such structures con-
sist of a hollow box with n shells and t outer layers. The magical formulas we derive depend on both n and t. We find 
that nanoboxes with t = 2  or  3, or walls with only a few layers generally have bulk coordinated atoms. The benefits 
of low-coordination in nanostructures is shown to only occur when the wall thickness is much thinner than normally 
synthesized. The case where t = 1 is unique, and has distinct magic formulas. Such low-coordinated nanoboxes are 
of interest for a myriad variety of applications, including batteries, fuel cells, plasmonic, catalytic and biomedical uses. 
Given these formulas, it is possible to determine the surface dispersion of the nanoboxes. We expect these formulas 
to be useful in understanding how the atomic coordination varies with n and t within a nanobox.
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Introduction
Nanoboxes were originally synthesized circa 2002 [1, 2]. 
A nanobox is distinct from a nanocage in that the latter 
has porous walls. Also, both are distinct from a nanof-
rame, in that the nanoframe is a structure (frame) con-
sisting of the low-coordinated outline of the cluster. Such 
anisotropic, polyhedral structures may be created from 
galvanic displacement reactions [3, 4]

where a nanocluster with metal A is sacrificially hollowed 
out by an aqueous solution of metal B, which has a higher 
reduction potential and creates the hollow solid of ele-
ment B. Half reactions occur at the anode and cathode 
of an electrochemical cell, resulting in the full combined 
reaction as above [5]. In some instances, scientists have 

(1)
Anode : yA(s) → yAx+

(aq) + xye−(aq)
Cathode : xB

y+
(aq) + xye−(aq) → xB(s)

Full Reaction : yA(s) + xB
y+
(aq) → yAx+

(aq) + xB(s)

combined galvanic displacement with void formation via 
Kirkendall Fickian diffusion of metals and vacancies [6]. 
Models for this activity exist for specific cases and in situ 
electron microscopy experiments have been reported [7, 
8]. Other synthetic methods include chemical etching 
[9], ion exchange [10], and metal–organic frameworks 
(MOFs) [11, 12]. A recent review of synthesis methods 
mentions that anisotropic clusters have yet to be made in 
the size region 2 < D < 20 nm, hindering the progress of 
nanocage fabrication in this important size domain [13].

Such hollow structures have low coordination, making 
them of interest for batteries [12], fuel cells [14], plas-
monic [15], catalytic [16], and biomedical applications 
[17]. Previous analysis shows that for catalytic applica-
tions, a coordination approach applies [18], while for 
energy storage, there are only some hints with density 
functional theory (DFT) results indicating that select 
facets are important [19]. We use a previously derived 
method from adjacency matrix analysis [20, 21] to dis-
cover the atomic coordination of a box with n shells and 
a wall thickness of t layers. This analysis shows that a 
nanobox with t = 2  or  3 has bulk coordination and as 
such the benefits of low coordination are present only 
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for nanoboxes with thinner walls than generally believed 
necessary. The methods we use quantifies the atomic 
coordination through magic numbers and formulas for 
thirteen types of nanoboxes.

Methods
Key to our analysis by coordination methods, is the crea-
tion of an adjacency matrix from the atomic coordinates 
of the nanobox. Such a matrix is created as follows. We 
define i and j as nearest neighbors, and separate them 
from the rest by requiring that the bond length rij < rc 
where rc is a threshold value, appropriate for the nano-
box. The value for rc must be less than the distance for 
second nearest neighbors and varies with the crystal 
structure [21]. For bcc crystals, rc < 1.15 · rmin , where 
rmin is the smallest bond length. Thus,

describes the adjacency matrix for the cluster, and

describes the Euclidean matrix for the box. We use the 
Euclidean matrix to determine the diameter, D, (nm) for 
the nanoboxes.

Since we create nearest neighbor adjacency matrices, 
we know the coordination number cni of vertex i by sum-
ming the elements of A(i, :) . Our structure consists of 
n+ 1 shells numbered 0, 1, ..., n, with t outer layers. Let 
Ncni(n, t) be the number of atoms with coordination cni 
where 1 ≤ cni ≤ cnM with cnM the maximal coordination 
in the nanobox. Then the total number of atoms in the 
nanobox is given by

The surface atoms in the outer shell (or interior) of the 
nanobox, n have a set of bondings less than the bulk 
coordination. Thus the maximal coordination for surface 
atoms is cns < cnM , and the number of surface atoms is

This holds if all the non-surface vertices have coordina-
tion larger than cns , which is true for all fcc, bcc, and hcp 
clusters. We determine the Ncni(n, t) by counting the col-
umns of the adjacency matrix whose sum is cni . Note that 
our cluster coordinate algorithm is built by shells, so that 

(2)A(i, j) =

{

1 if rij < rc and i �= j
0 otherwise

(3)E(i, j) =

{

rij if rij < rc and i �= j
0 otherwise

(4)NT (n, t) =

cnM
∑

cni=1

Ncni(n, t).

(5)NS(n, t) =

cns
∑

cni=1

Ncni(n, t).

each subsequent shell contains all the previous lower val-
ues of n. In addition, the number of bonds in the box is

where NB(n, t) is the number of bonds and cnM is the 
maximum coordination. The factor of 1/2 comes about 
because of the pairwise nearest neighbor bonding.

Since we know that these equations depend on n, t 
as a polynomial of degree at most 3, we can compute 
Ncni(n, t) for 4 consecutive values of n, say n = n0 + j , 
j  =  0, 1, 2, 3. A simple interpolating polynomial will 
then give the polynomial coefficients. It has to be veri-
fied that by increasing n0 , which is usually equal to 1, 
the formulas do not change. If the formulas become 
stable from n0 on, then they hold for all n ≥ n0 . To 
get the exact rational coefficients, one needs to solve 
the Vandermonde system for the coefficients in exact 
arithmetic.

Note that in the magical formulas for nanoboxes we 
have that n > t so that therefore contrary to any expecta-
tion, filling up the box by an appropriate choice of t will 
not re-create the original magic formulas for the com-
plete solid clusters. These magic formulas are useful for 
modeling the mesoscale properties of clusters and boxes, 
or cages. Complete sets of formulas were originally 
derived for nineteen cluster types. In this manuscript, we 
derive magical formulas for thirteen types of nanoboxes.

In the magical formulas below, we find that bulk coor-
dination may appear for either t =  2 or t =  3 layers of 
shell thickness. Most are for layers where t  =  2; the 
exceptions are the fcc cube, the cuboctahedron, the ico-
sahedron, and the bcc cube and truncated cube. In the 
latter, bulk coordination only appears for t  =  3 layers. 
For the data below, the tables of the magical formulas are 
accompanied by a figure of a ‘half-box’ to show the inte-
rior of the nanoboxes. Alongside is a colorbar indicating 
the coordination and number of such in parentheses.

Results and Discussion
In order to delineate the applicability of magic formu-
las, we outline how catalytic behavior may depend on 
coordination and such formulas. We define G as the 
size dependent Gibbs energy of the cluster. Because of 
adatoms being bonded to the outer shell atoms there is 
an increase in G that is called the adsorption energy and 
is denoted as �G . This can be split up over different coor-
dination types of the atoms on the outer shell bonding to 
adatoms. For example, a kink atom adds to the adsorp-
tion energy with an amount �Gk . Similarly an edge atom 
adds �Ge , while a facet atom contributes �Gf  then [18]:

(6)NB(n, t) =
1

2

cnM
∑

cni=1

cni · Ncni(n, t),
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where No is the number of atoms in the outer shell 
of the indicated type. The total number of atoms 
in the outer shell bonded to adatoms is defined as 
Ns = Nf + Ne + Nk , resulting in:

with the Gibbs energy fraction expressed through the 
edge and kink sites which have explicit coordinations for 
specific structures. This demonstrates that magic for-
mulas have a role in surface reactions, through edge and 
kink coordinations and their formulas. Note that Eq. (8) 
applies to adsorption to on-top sites, otherwise not all 
adatoms will be bonded to atoms in the outer shell. In 
such a model, the kink sites have magic formulas that are 
constant with the number of shells, n, edge sites have for-
mulas that are linear with n, and facet sites have formu-
las that are quadratic with n. More specifically, the kink 
sites are the lowest coordinated formulas, the edge sites 
are the second lowest coordinated, and facet sites have 
cn = 8 for (100) facets and cn = 9 for (111) facets.

Two fundamental relationships on a per-particle basis 
can be applied. For the Gibbs energy and adsorption 
constant, Ka , it holds:

where R is the gas constant and T is the temperature in 
Kelvin. In addition, Brønsted–Evans–Polanyi relation-
ships are widely used in homogeneous and heterogene-
ous catalysis [18, 22] using a relationship for reaction 
constants k and equilibrium constants K as follows:

where g and α (Polanyi parameter) are constants. The 
Polanyi parameter is unitless and a proper fraction, as 
given originally by Brønsted [23]. We then have:

where

and

(7)�G =
∑

o∈{f ,e,k}

�GoNo

(8)
�G =�Gf · (1− fe − fk)+�Ge · fe +�Gk · fk

where fo = No/Ns, o ∈ {e, k},

(9)Ka = exp

(

−
�G

RT

)

,

(10)k = gKα , 0 < α < 1,

(11)k = k ′aexp
(

−α
(

f en · χe (Dn)+ f kn · χ
k
(Dn)

)

)

,

(12)
χe (D) =

�Ge(D)−�Gf (D)

RT
,

χ
k
(D) =

�Gk(D)−�Gf (D)

RT
,

This analysis shows that determining a catalytic model 
necessitates a method of calculating the Gibbs energy. 
Known catalytic reactions such as the two-step and 
Langmuir–Hinshelwood mechanisms have been consid-
ered [24].

FCC Nanoboxes
Face centered cubic structures are the most common 
form for nanoclusters and nanoboxes. This is the struc-
ture of the metals with interesting properties, such as the 
noble metals with plasmonic properties, and the catalytic 
precious metals. Since gold has a high reduction poten-
tial of 1.50  V (see Eq.  1) versus the standard hydrogen 
electrode (SHE) [5], it is one of the easiest metals to syn-
thesize as a nanobox or nanocage. Gold nanoboxes or 
nanocages have been formed in cubic [1], cuboctahedron 
[25], icosahedron and decahedron [26], octahedron [27] 
and tetrahedron [28] shapes.

We can determine the approximate size of these nano-
boxes by using a coordination approach for the nearest 
neighbor bond length r(cn) [29],

Here rB is the bulk bond length for gold (0.2884 nm) and 
〈cn〉c is the average coordination of the cluster. We find a 
linear relationship between D and n, the number of clus-
ter shells, as shown in Table 1:

We use nanoboxes with t = 3, as the formulas vary with 
t, and we wish to achieve some bulk coordination. For 
the calculation of D(n), we use the maximum distance 
between atoms in the cluster, derived from the Euclidean 

(13)k ′a = g exp

(

−α
�Gf

RT

)

.

(14)r(cn) =
2rB

(

1+ exp
(

12−�cn�c)
8·�cn�c

)) .

(15)D(n) = a · rB · n+ b.

Table 1  Linear constants for D(n)

a b Nanocluster

2.0 − 0.0374 Au cuboctahedron

a b Nanobox  t = 3

1.9700 − 0.0060873 Au cuboctahedron

2.4074 − 0.003519 Au cube

2.3902 − 0.37914 Au truncated cube

1.3980 − 0.0093924 Au octahedron

0.9888 − 0.021186 Au tetrahedron

1.4821 − 0.003994 Au icosahedron

1.6280 − 0.0068481 Au decahedron
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matrix. Note that D(n) is an empirical formula, derived 
from data (vary n and calculate D), and as such is not 
proven.

These relationships produce diameters in agreement 
with other data, from DFT. For the solid cuboctahedra 
with N equal to 55, 561, and 923 we get diameters of 
1.12 nm, 2.85 nm, and 3.43 nm. This compares favorably 
with published DFT results for 55 atoms of 1.1 nm [30], 
for 561 atoms, 2.7  nm [31], and for 923 atoms, 3.5  nm 
[30]. The magical formulas for some fcc nanoboxes are 
tabulated below (Tables 2, 3, 4, 5, 6, 7, 8).

Table 2  Magic formulas for the fcc cube (even layers)

fcc cube

Atoms (12t)n2 + (−12t2 + 12t)n+ (4t3 − 6t2 + 3t), n > t ≥ 4

Bonds (72t − 48)n2 + (−72t2 + 120t − 36)n

+(24t3 − 60t2 + 36t − 12), n > t ≥ 4

cn = 3 8, n > t ≥ 2

cn = 5 12n− 12, n > t ≥ 2

cn = 8 24n2 + (−24t − 24)n+ (12t2 + 12t + 6), n > t ≥ 2

cn = 9 24n+ (−24t), n > t ≥ 2

cn = 11 12n+ (−12t + 12), n > t ≥ 2

cn = 12 (12t − 24)n2 + (−12t2 + 36t − 24)n

+(4t3 − 18t2 + 27t − 14), n > t ≥ 4

Table 3  Magic formulas for the fcc cube (odd layers)

fcc cube

Atoms (12t)n2 + (−12t2 + 12t)n+ (4t3 − 6t2 + 3t + 1), n > t ≥ 3

Bonds (72t − 48)n2 + (−72t2 + 120t − 36)n

+(24t3 − 60t2 + 36t), n > t ≥ 3

cn = 3 8, n > t ≥ 3

cn = 5 12n− 12, n > t ≥ 3

cn = 8 24n2 + (−24t − 24)n+ (12t2 + 12t + 12), n > t ≥ 3

cn = 9 24n+ (−24t − 24), n > t ≥ 3

cn = 10 24, n > t ≥ 3

cn = 11 12n+ (−12t), n > t ≥ 3

cn = 12 (12t − 24)n2 + (−12t2 + 36t − 24)n

+(4t3 − 18t2 + 27t − 7), n > t ≥ 3
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Table 4  Magic formulas for  the  fcc truncated cube (even 
layers)

fcc truncated cube

Atoms (12t)n2 + (−12t2 + 12t)n+ (4t3 − 6t2 + 3t), n > t ≥ 2

Bonds (72t − 48)n2 + (−72t2 + 120t − 36)n

+(24t3 − 60t2 + 36t + 36), n > t ≥ 2

cn = 5 12n− 12, n > t ≥ 2

cn = 7 24, n > t ≥ 2

cn = 8 24n2 + (−24t − 24)n+ (12t2 + 12t − 18), n > t ≥ 2

cn = 9 24n+ (−24t − 40), n > t ≥ 2

cn = 10 48, n > t ≥ 2

cn = 11 12n+ (−12t − 12), n > t ≥ 2

cn = 12 (12t − 24)n2 + (−12t2 + 36t − 24)n

+(4t3 − 18t2 + 27t + 10), n > t ≥ 2

Table 5  Magic formulas for  the  fcc truncated cube (odd 
layers)

fcc truncated cube

Atoms (12t)n2 + (−12t2 + 12t)n+ (4t3 − 6t2 + 3t − 7), n > t ≥ 3

Bonds (72t − 48)n2 + (−72t2 + 120t − 36)n

+(24t3 − 60t2 + 36t − 24), n > t ≥ 3

cn = 5 12n− 12, n > t ≥ 3

cn = 7 24, n > t ≥ 3

cn = 8 24n2 + (−24t − 24)n+ (12t2 + 12t − 12), n > t ≥ 3

cn = 9 24n+ (−24t − 24), n > t ≥ 3

cn = 10 24, n > t ≥ 3

cn = 11 12n+ (−12t), n > t ≥ 3

cn = 12 (12t − 24)n2 + (−12t2 + 36t − 24)n

+(4t3 − 18t2 + 27t − 7), n > t ≥ 3
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Table 6  Magic formulas for the fcc cuboctahedron

Cuboctahedron

Atoms (10t)n2 + (−10t2 + 10t)n+ ( 10
3
t
3 − 5t2 + 11

3
t), n > t ≥ 3

Bonds (60t − 36)n2 + (−60t2 + 96t − 36)n

+(20t3 − 48t2 + 40t − 12), n > t ≥ 3

cn = 5 12, n > t ≥ 2

cn = 7 24n− 24, n > t ≥ 2

cn = 8 12n2 + (−12t − 12)n+ (6t2 + 6), n > t ≥ 2

cn = 9 8n2 + (−8t − 16)n+ (4t2 + 4t + 8), n > t ≥ 2

cn = 10 24n+ (−24t), n > t ≥ 2

cn = 11 12, n > t ≥ 2

cn = 12 (10t − 20)n2 + (−10t2 + 30t − 20)n+ ( 10
3
t
3 − 15t2

+ 71
3
t − 14), n > t ≥ 3

Table 7  Magic formulas for the fcc octahedron

fcc octahedron

Atoms (4t)n2 + (−8t2 + 8t)n+ ( 16
3
t
3 − 8t2 + 14

3
t), n > t ≥ 2

Bonds (24t − 12)n2 + (−48t2 + 72t − 24)n

+(32t3 − 72t2 + 52t − 12), n > t ≥ 2

cn = 4 6, n > t ≥ 2

cn = 7 12n− 12, n > t ≥ 2

cn = 9 8n2 + (−16t − 8)n+ (16t2 − 8t + 8), n > t ≥ 2

cn = 11 12n+ (−24t + 12), n > t ≥ 2

cn = 12 (4t − 8)n2 + (−8t2 + 24t − 16)n+ ( 16
3
t
3 − 24t2

+ 110
3
t − 14), n > t ≥ 2
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Icosahedral and Decahedral Nanoboxes
See Tables 9 and 10.

Table 8  Magic formulas for the fcc tetrahedron

fcc tetrahedron

Atoms ( 3
2
t)n2 + (− 9

2
t
2 + 6t)n+ ( 9

2
t
3 − 9t2 + 11

2
t), n > t ≥ 2

Bonds (9t − 9
2
)n2 + (−27t2 + 45t − 27

2
)n+ (27t3 − 135

2
t
2

+ 93
2
t − 9), n > t ≥ 2

cn = 3 4, n > t ≥ 2

cn = 6 6n− 6, n > t ≥ 2

cn = 7 3n− 9t , n > t ≥ 2

cn = 8 6, n > t ≥ 2

cn = 9 3n2 + (−6t − 12)n+ (9t2 + 18t − 3), n > t ≥ 2

cn = 10 6n− 18t , n > t ≥ 2

cn = 11 3, n > t ≥ 2

cn = 12 ( 3
2
t − 3)n2 + (− 9

2
t
2 + 12t − 3)n+ ( 9

2
t
3 − 18t2

+ 29
2
t − 4), n > t ≥ 2

Table 9  Magic formulas for the icosahedron

Icosahedron

Atoms (10t)n2 + (−10t2 + 10t)n+ ( 10
3
t
3 − 5t2 + 11

3
t), n > t ≥ 3

Bonds (60t − 30)n2 + (−60t2 + 90t − 30)n

+(20t3 − 45t2 + 37t − 12), n > t ≥ 3

cn = 6 12, n > t ≥ 2

cn = 8 30n− 30, n > t ≥ 2

cn = 9 20n2 + (−20t − 40)n+ (10t2 + 10t + 20), n > t ≥ 2

cn = 10 30n+ (−30t), n > t ≥ 2

cn = 11 12, n > t ≥ 2

cn = 12 (10t − 20)n2 + (−10t2 + 30t − 20)n+ ( 10
3
t
3 − 15t2

+ 71
3
t − 14), n > t ≥ 3
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Diamond and Simple Cubic Nanoboxes
The diamond cubic lattice structure is formed by an 
allotrope of carbon as well as the elements silicon and 
germanium. Also, some cubic compounds form this 
structure, as cubic iron oxide, tetrahedral diamond 
maghemite γ-Fe2O3. The bond length for Fe–O in tet-
rahedral diamond maghemite γ-Fe2O3 = 0.186 nm [32]. 
This leads to the diameter of diamond clusters D(n) as 
below:

According to reference [12], microboxes of cubic iron 
oxide formed and had interesting lithium storage capabil-
ities. We are not aware of a complete coordination model 
for energy storage, but as mentioned above, DFT results 
indicate that activity may depend on facet orientation 
[19]. No such model of storage dependence on coordina-
tion exists presently as we have for catalysis. From equa-
tion (16) above (created using t = 4), a microbox requires 
approximately n =  1600 shells for diamond maghemite. 
Magical formulas for the diamond and simple cubic lat-
tice structures are listed below (Tables 11, 12).

(16)D(n) = 3.3984 · nB · n− 0.21194.Table 10  Magic formulas for the decahedron

Decahedron

Atoms (5t)n2 + (−10t2 + 10t)n+ ( 20
3
t
3 − 10t2 + 16

3
t), n > t ≥ 2

Bonds (30t − 15)n2 + (−60t2 + 90t − 25)n

+(40t3 − 90t2 + 57t − 12), n > t ≥ 2

cn = 4 5, n > t ≥ 2

cn = 6 5n− 3, n > t ≥ 2

cn = 8 10n− 10, n > t ≥ 2

cn = 9 10n2 + (−20t − 20)n+ (20t2 + 10t + 10), n > t ≥ 2

cn = 10 20n+ (−40t), n > t ≥ 2

cn = 11 12, n > t ≥ 2

cn = 12 (5t − 10)n2 + (−10t2 + 30t − 15)n+ ( 20
3
t
3 − 30t2

+ 106
3
t − 14), n > t ≥ 2

Table 11  Magic formulas for diamond nanoboxes

Diamond (only even t allowed)

Atoms (24t)n2 + (−24t2 + 12t)n+ (8t3 − 6t2 + 3t), n > t ≥ 2

Bonds (48t − 24)n2 + (−48t2 + 48t − 12)n

+(16t3 − 24t2 + 12t + 12), n > t ≥ 2

cn = 1 12n− 8, n > t ≥ 2

cn = 2 24n2 + (−24t − 12)n+ (12t2 − 6), n > t ≥ 2

cn = 3 12n+ (−12t + 12), n > t ≥ 2

cn = 4 (24t − 24)n2 + (−24t2 + 36t − 12)n

+(8t3 − 18t2 + 15t + 2), n > t ≥ 2
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BCC Nanoboxes
See Tables 13, 14 and 15.

Table 12  Magic formulas for the simple cube

Simple cube

Atoms (24t)n2 + (−24t2)n+ (8t3), n > t ≥ 2

Bonds (72t − 24)n2 + (−72t2 + 24t)n+(24t3 − 12t2), n > t ≥ 2

cn = 3 8, n > t ≥ 2

cn = 4 24n− 24, n > t ≥ 2

cn = 5 48n2 + (−48t − 48)n+ (24t2 + 24), n > t ≥ 2

cn = 6 (24t − 48)n2 + (−24t2 + 48t + 24)n

+(8t3 − 24t2 − 8), n > t ≥ 2

Table 13  Magic formulas for the bcc cube

bcc cube

Atoms (6t)n2 + (−6t2 + 6t)n+ (2t3 − 3t2 + 3t), n > t ≥ 3

Bonds (24t − 24)n2 + (−24t2 + 48t − 24)n+

(8t3 − 24t2 + 24t − 8), n > t ≥ 3

cn = 1 8, n > t ≥ 2

cn = 2 12n− 12, n > t ≥ 2

cn = 4 12n2 + (−12t − 12)n+ (6t2 + 6), n > t ≥ 2

cn = 6 12n+ (−12t), n > t ≥ 2

cn = 7 8, n > t ≥ 2

cn = 8 (6t − 12)n2 + (−6t2 + 18t − 12)n

+(2t3 − 9t2 + 15t − 10), n > t ≥ 3
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Table 14  Magic formulas for the bcc truncated cube

bcc truncated cube

Atoms (6t)n2 + (−6t2 + 6t)n+ (2t3 − 3t2 + 3t), n > t ≥ 3

Bonds (24t − 24)n2 + (−24t2 + 48t − 24)n

+(8t3 − 24t2 + 24t + 40), n > t ≥ 3

cn = 2 12n− 12, n > t ≥ 2

cn = 4 12n2 + (−12t − 12)n+ 6t2 − 18, n > t ≥ 2

cn = 5 24, n > t ≥ 2

cn = 6 12n+ (−12t − 24), n > t ≥ 2

cn = 7 40, n > t ≥ 2

cn = 8 (6t − 12)n2 + (−6t2 + 18t − 12)n

+(2t3 − 9t2 + 15t − 10), n > t ≥ 3

Table 15  Magic formulas for  the  bcc rhombic 
dodecahedron

bcc rhombic dodecahedron

Atoms (12t)n2 + (−12t2 + 12t)n+ (4t3 − 6t2 + 4t), n > t ≥ 2

Bonds (48t − 24)n2 + (−48t2 + 72t − 24)n

+(16t3 − 36t2 + 28t − 8), n > t ≥ 2

cn = 4 14, n > t ≥ 2

cn = 5 24n− 24, n > t ≥ 2

cn = 6 24n2 + (−24t − 24)n+ (12t2 + 12), n > t ≥ 2

cn = 7 (24)n+ (−24t + 8), n > t ≥ 2

cn = 8 (12t − 24)n2 + (−12t2 + 36t − 24)n

+(4t3 − 18t2 + 24t − 10), n > t ≥ 2
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HCP Nanoboxes
See Table 16.

The Case t = 1
The special case t = 1 is unique and as such has distinct 
magical formulas. We examine this case for some of the 
above nanoboxes. Nanoboxes with ultrathin walls have 
been formed with cubic [33], octahedral [16], and ico-
sahedral shapes [34]. According to the magical formu-
las below, the cubic nanobox with t =  1 has the lowest 
coordination. Platinum has a relatively high reduction 
potential of 1.18 V versus the SHE, so it can be formed by 
galvanic replacement, see Eq. (1) [5]. However, the oxi-
dation reduction reaction (ORR) properties of some of 
these platinum-based nanocages indicate that structures 
with (111) facets as opposed to (100) facets have better 
ORR mass activities [35].

Thus the icosahedron with 20 (111) facets has the best 
ORR mass activity, followed by the octahedron, and lastly 
the truncated cube. This property of catalytic behavior 
from facet orientation taking precedence over coordina-
tion number is evidenced by the tabular data below. In 
other words, as mentioned in the following tables, the 
cube with (100) facets has the lowest magic coordina-
tion numbers with four and five, yet the octahedron and 
icosahedron with (111) facets and larger magic formu-
las have better ORR activity. This property is evidenced 
in nanoclusters as well, where DFT results confirm the 
dominance of the (111) facets [36], especially for PtNi 
alloys (Tables 17, 18, 19, 20, 21).

Table 16  Magic formulas for the hexagonal bipyramid

Hexagonal bipyramid

Atoms (12t)n2 + (−12t2 + 12t)n+ (4t3 − 6t2 + 4t), n > t ≥ 2

Bonds (72t − 42)n2 + (−72t2 + 114t − 42)n

+(24t3 − 57t2 + 45t − 12), n > t ≥ 2

cn = 3 2, n > t ≥ 2

cn = 5 6, n > t ≥ 2

cn = 6 3n+ 3, n > t ≥ 2

cn = 7 (24)n− 24, n > t ≥ 2

cn = 8 12n2 + (−12t − 15)n+ (6t2 + 9), n > t ≥ 2

cn = 9 12n2 + (−12t − 18)n+ (6t2 + 6t + 6), n > t ≥ 2

cn = 10 30n+ (−30t), n > t ≥ 2

cn = 11 12, n > t ≥ 2

cn = 12 (12t − 24)n2 + (−12t2 + 36t − 124)n

+(4t3 − 18t2 + 28t − 14), n > t ≥ 2

Table 17  Magic formulas for the truncated cube

Truncated cube

Atoms 12n2 − 6, n > t = 1

Bonds 24n2 + 12n− 24, n > t = 1

cn = 4 12n2 − 24n+ 18, n > t = 1

cn = 5 24n− 24, n > t = 1
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Table 18  Magic formulas for the icosahedron

Icosahedron

Atoms 10n2 + 2, n > t = 1

Bonds 30n2, n > t = 1

cn = 5 12, n > t = 1

cn = 6 10n2 − 10, n > t = 1

Table 19  Magic formulas for the cuboctahedron

Cuboctahedron

Atoms 10n2 + 2, n > t = 1

Bonds 24n2, n > t = 1

cn = 4 6n2 − 12n+ 18, n > t = 1

cn = 5 24n− 24, n > t = 1

cn = 6 4n2 − 12n+ 8, n > t = 1

Table 20  Magic formulas for the octahedron

Octahedron

Atoms 4n2 + 2, n > t = 1

Bonds 12n2, n > t = 1

cn = 4 6, n > t = 1

cn = 6 4n2 − 4, n > t = 1

Table 21  Magic formulas for the decahedron

Decahedron

Atoms 5n2 + 2, n > t = 1

Bonds 15n2 + 5n− 5, n > t = 1

cn = 4 5, n > t = 1

cn = 5 2, n > t = 1

cn = 6 5n2 − 10n+ 5, n > t = 1

cn = 7 10n− 10, n > t = 1
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Dispersion
Given the importance of edge and kink sites relative 
to facet ones with regard to catalytic activity, we have 
determined the surface dispersion for some of the nano-
boxes we study. The (100) facets have cn =  8 while the 
(111) facets have cn =  9. This may provide insight into 
the reasons for the individual polyhedral activity when 
compared among the nanoboxes. In Fig. 1 below, we plot 
the surface dispersion Ds = (Ne + Nk)/NS · 100% . In this 
relationship Nk is the number of kink or corner sites and 
Ne the number of edge sites. As can be seen in Figure 1, 
nanoboxes with (111) surfaces as opposed to (100) sur-
faces have higher dispersion, giving credence to the pref-
erence of catalytic activity of the (111) facet.

Conclusion
In summary, we have presented the first detailed math-
ematical description of magical formulas for nanoboxes. 
The case of the shell thickness, t  =  1 is distinct from 
t > 1 and we tabulate the data for some of these cases. 
The formulas for the coordination, number of atoms, and 
number of bonds are all enumerated. We find that bulk 
coordination appears for layers where t = 2 or 3, and as 
such is much thinner than normally synthesized. The 
benefits of low coordination are only achieved for very 
thin walls. We expect these results to be useful for mod-
eling and experimental work.

Abbreviations
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